If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8p^2+24=0
a = -8; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-8)·24
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-8}=\frac{0-16\sqrt{3}}{-16} =-\frac{16\sqrt{3}}{-16} =-\frac{\sqrt{3}}{-1} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-8}=\frac{0+16\sqrt{3}}{-16} =\frac{16\sqrt{3}}{-16} =\frac{\sqrt{3}}{-1} $
| 7y+5=5y-3 | | 6(6-6a)=108 | | 1+5a=-4+4a | | 8x-17-5x=13 | | -2-(5r-1)=5r-33 | | 5y-24=3y+24-2y | | 2x-8=3x+2+x-6 | | 13=-41=x | | |7x+84|=14x | | 10=7x-1+2x+4=6x+2 | | 10n-6=100 | | x²-6x=1 | | 45-x=105 | | 833=n/2(2+(n-1)6) | | -4-n=-10-3n | | 1b-10=10b | | 2n-7=5n=10 | | 5x+2=7x-13 | | 36-0=6x | | 12-(2x-8)=(x+16) | | 4n+8+5n+27=180 | | 56+5+x=0 | | 11*3*x=2(11*3)+2(11*x)+2(3*x) | | 6(2y+6)=4(3y+9) | | -83=-v-5(4v+4) | | 4z-15=4z11 | | 5x-4=-48 | | 13x^2=208 | | (3x-4)=90 | | 7x-6=3x-` | | 5^(2x+3)=35 | | 60+x=10+7 |